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1. Introduction

The purpose of the Rosetta mission is the in situ analysis of a cometary nucleus using both
remote sensing equipment and scientific instruments delivered to the comet surface by a lander and
transmitting measurement data to the comet-orbiting probe. Following a tour of planets including
one Mars swing-by and three Earth swing-bys, the Rosetta probe is scheduled to rendezvous with
comet 67P/Churyumov-Gerasimenko in May 2014. The mission poses various flight dynamics
challenges, both in terms of parameter estimation and maneuver planning.

Along with spacecraft parameters, the comet’s position, velocity, attitude, angular velocity, inertia
tensor and gravitational field need to be estimated. The measurements on which the estimation
process is based are ground-based measurements (range and Doppler) yielding information on the
heliocentric spacecraft state and images taken by an on-board camera yielding information on the
comet state relative to the spacecraft. The image-based navigation depends on the identification of
cometary landmarks (whose body coordinates also need to be estimated in the process). The paper
will describe the estimation process involved, focusing on the phase when, after orbit insertion, the
task arises to estimate the cometary rotational motion from camera images on which individual
landmarks begin to become identifiable.

2. Scenario Studied

We choose a space-fixed reference system and denote by £(f) = (51(t),§2(t),€3(t))T € R® the
coordinate representation of the position vector of the comet’s barycenter at time ¢ with respect
to this system. Next we choose a coordinate system rigidly attached to the comet, denote by
g1(t), g2(t), ga(t) € R? the coordinate representations of these body-fixed directions with respect to
the reference system and call the matrix g(t) = (g1(¢) | g2(¢) | g3(t)) € SO(3), whose columns are
the directions g;(¢), the comet attitude at time ¢. It is important to realize that this body-fixed
system can be arbitrarily chosen. (From a physical point of view it would be most convenient to
choose g1, g2, 93 as the directions of the comet’s principal axes, but these principal axes are not
known initially. From a practical point of view one will rather choose a geometrically defined body-
system whose direction vectors are defined in terms of landmarks on the comet surface which can be
identified on camera images.) Finally, we denote by w(t) € R? the body-referenced angular velocity
vector and by I € R3*3 the (time-invariant) body-referenced inertia tensor of the spacecraft. To
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summarize, we introduce the following quantities:

&(t) = position of comet’s barycenter at time ¢;
g(t) = comet attitude at time ¢; )
w(t) = body-referenced angular velocity vector of comet;

I = body-referenced inertia tensor of comet.

Moreover, we associate with each vector w € R® the cross-product operator

0 —Wws3 w2
L(w) = ws 0 —w (2)
—W9 w1 0

which is characterized by the equation L{w)v = w x v for all v € R3. Under the assumption that
there are no external torques acting on the comet (for example due to outgassing), the rotational
motion of the comet is governed by the equations

g = gL(w) and Jw = (lw)xXw. (3)

In general, closed-form solutions to Euler’s equation Iw = (Iw) X w are not available in terms of
elementary functions. This is different, however, in the special case that w points in a space-fixed
direction which means that w(t) = u(¢)a where u is a scalar function and where a is a fixed vector.
In this case the equation Iw = (Iw) x w becomes @(la) = u?(Ia) x a which is only possible if
=0, 1. e., if w is constant. Then necessarily Iw x w = 0 so that w is an eigenvector of I, i. e.,
is aligned with a principal axis direction. For constant w the equation ¢ = gL(w) has the explicit
solution g(t) = go exp(tL(w)) where go = g(0) is the attitude at the reference time ¢t = 0.

We now proceed to derive the measurement equations. We assume that a landmark located on the
comet surface (such as a crater) can be identified on a CCD image taken by the on-board camera.
If b € R® is the body-referenced position of the landmark, then the space-referenced position of
this landmark at time ¢ is €(t) = &(¢t) 4+ b1g1(t) + b2ga(t) + bsgs(t) = &(¢) + g(t)b. We identify
the spacecraft position x(¢) with the position of the optical center of the on-board camera, denote
by f the focal width of this camera and by c(t) = (c1(¢) | ca(t) | c3(t)) € SO(3) the camera
attitude (where it is assumed that ¢z points in the direction of the optical axis). To summarize,
we introduce the following quantities:

b = body-referenced landmark position,
£(t) = &(t) +g(t)b = space-referenced landmark position at time ¢,
x(t) = spacecraft position (optical center) at time ¢, (4)
c(t) = camera attitude at time ¢,

f = focal width of camera.

The image point is given as the point of intersection between the ray from the landmark through
the optical center and the image plane, which means that there are real numbers A > 0 and u, v € R
(where v and v denote the horizontal and vertical image coordinates) such that £+ Az — ¢) =
x + ucy + veg — fes, as is shown in Figure 1.



Fig. 1: Derivation of the measurement equations.

The equation £ + A(x — £) = x 4+ ucy; + vea — fes can be rewritten in the form
(A=1)(x—4¥) = ucy +vex — fes. (5)

Taking the inner product with ¢s we find that (A — 1){x — £, c3) = — f and hence that

A_1::Z;5%25. (6)

Plugging (6) back into (5) and taking the inner product with ¢; and ¢ we find that
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(r—lca) (&€ gb,ca)

For the purposes of our present analysis we may assume that the spacecraft position x is known from
orbit determination based on ground-based measurements (range and Doppler) and that the camera
attitude ¢(¢) is known from spacecraft attitude determination. The task is then to estimate from
the available measurements (7) (and the underlying dynamical equations) the comet’s position,
velocity, attitude and angular velocity at some reference time and the body-coordinates of the
landmarks involved. We first study the phase in which the comet can be identified as a point on
camera images; in this case the comet itself is treated as a single landmark (with b = 0), and the
task is reduced to estimating the comet position and velocity.

3. Estimation of Comet Position and Velocity

We assume that images are taken during a time interval which is short enough to replace the
spacecraft and the comet orbits by their tangent lines. Assuming thus a linear regime, a moment’s
thought shows that it is not possible to determine the comet state from a sequence of pictures
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alone, as the spacecraft-comet vector and the speed of the comet are uniquely determined only up

to a common scaling factor.

Toroit

Fig. 2: Impossibility of determining the comet state simply from camera images.

What can be done is performing a maneuver (more or less in the blind) which changes the direction
of the spacecraft motion. In this case the comet state can be determined from four images of which
at least one each must be taken before and after the maneuver. To derive the necessary formulas,
let us fix the reference time ¢ = 0 at the time of the maneuver and let us introduce the following

data:

xo = spacecraft position at maneuver time;
v := spacecraft velocity (assumed constant during observation period);
& = comet position at maneuver time;
u := comet velocity (assumed constant during observation period); (8)
d = & — xo = vector from spacecraft to comet at maneuver time;
w = u—v = velocity of comet relative to spacecraft before maneuver);
Av := velocity change caused by maneuver.

Then at any time s < 0 the comet and spacecraft positions are &y + su and xg + sv, respectively,
whereas at any time ¢ > 0 these positions are & + tu and xo + t(v + Av), respectively. Thus
the information to be gleaned from camera images are, for each s < 0, the unit vector es in the
direction of (& + su) — (xo + sv) = d + sw, and, for each ¢ > 0, the unit vector e; in the direction

of (& +tu) — (xo + tv + tAv) = d + t(w — Av), i.e., the unit vectors

 d+sw d+tlw— Av)
“ T d+ swl| and e, := ld+ t(w— Av)| (9)




comet or bit

spacecr aft or bit

Fig. 3: Effect of orbit maneuver.

spacecr aft

Fig. 4: Determination of comet state using an orbit maneuver.



Let us assume that images of the comet are obtained at times 57 < s2 < s3 < 0 < ¢. With the

notation introduced above, let us write e; := e, for the unit vector from the spacecraft to the
comet at time s; (where i = 1,2, 3). Knowledge of e; and e, fixes the plane in which d and w lie.
Let us write d; := ||d + s;w|| for the spacecraft-comet distance at time s; and let us denote by ¢;;

the angle from e; to e;; then the Theorem of Sines yields

sin(y12) _ sin(m — a0 — ¢12) _ sin(a + ¢12) and
(52 — s1)[|wl] d1 d1 (10)
sin(y13) _ sin(m — a0 — ¢13) _ sin(a + ¢13)
(83 — s1)[|w] di d1 '
Taking quotients, we find that
sin(p12) - (s3—51) _ sin(a+12) _ tan(a) cos(p12) + sin(pi2) (11)

sin(p13) - (s2—81) sin(a+¢13) tan(ca) cos(p13) + sin(pi3)

from which tan(«) can be determined (and hence also o with a single ambiguity to be resolved).
Once « is known, (10) relates the speed ||w| with the distance dy, say ||w| = Ad; with a known
factor A. Then the Theorem of Cosines yields

|d)|? = 2 + s2|w|? — 2dy 51| |Jw]| cos(c)
= d% + S%d%)\z — 2d%|51|)\ cos(a) (12)
= df (14 sTA* — 2|s1[Acos(a))

so that ||d|| = ©d; with a known factor ©. Moreover, for k = 2,3 the Theorem of Sines yields

sin(av) _ sin(m—a—@1x) _ sin(a+¢1x) and hotice
dy dy dy (13)
sin(a)

dp, = 0id h 0, = ——~ .
k RA1 WACE Uk sin(a+@1x)

We now make use of the equations d+ s;w = d;e; where ¢ = 1, 2, 3. We take two of these equations,
say with indices ¢ and j; subtracting these equations and also subtracting the s;-fold of the first
equation from the s;-fold of the second equation, we find that

die;i—d;e; fic;i—0;e; sid;je; —s;die; si0je;—s;0;e;
:ZZ ]]:dlll Jv7 and d:Z]] jZZ:dIZ]j ‘]7/7/‘

Si—Sj Si—Sj Si—Sj Si—Sj

(14)

This shows that the measurements taken before the maneuver enable us to determine w and d up
to a common scaling factor d;. (In particular, the unit vectors e = d/||d|| and e, = w/|w|| can be
determined from the measurements.) The scaling factor d; can now be determined from one single
measurement, taken after the maneuver; if e; is the unit vector from the spacecraft to the comet
at some time ¢ > 0, we have d 4 t(w — Av) = pe; for some factor p. Since d = ||d|leq = Odyey and
w = ||w| €y = Ad1€y this means Odyeyq + t(Adie, — Av) = pey, i.e.,

dq1(Oeq + they) — pey = tAw (15)



where the coefficients d; and g are unknown whereas everything else is known. Thus d; and u
can be found by decomposing tAv into its components relative to the known vectors Oey + tAey,
and e;. (The velocity change Av can be assumed to be known from spacecraft orbit determination
using ground-based measurements after the maneuver.) Hence from now on we can assume that
the comet’s position and velocity are known and concentrate on estimating the comet’s rotational
parameters.

4. Estimation of Cometary Rotation Parameters

Here we consider the phase in which the spacecraft is in orbit around the comet and the first
individual landmarks can be identified on CCD images; we try to estimate the rotational motion
of the comet and the locations of the observed landmarks. We make the simplifying assumption
that the comet rotates with a constant spin rate w about an axis given by a space-fixed direction d;
this assumption is legitimate at least for short observation periods. Choosing a body-fixed system
whose third direction coincides with the (unknown) spin axis direction and denoting by go the
comet attitude at initial time g = 0, the attitude at any time ¢ is given by

cos(wt) —sin(wt) 0
g(t) = go | sin(wt) cos(wt) O . (16)
0 0 1

Hence if a landmark is located at radius r, longitude ¢ und latitude # with respect to this body-fixed
system, then its space-referenced position is given by

cos 0 cos ¢ cos 0 cos(p + wt)
£t) = &) +7r-g(t) | cosfsing | = &(t)+7-go | cosfsin(p +wt) | . (17)
sin @ sin

Let us denote by n the unit vector from the optical center to the landmark, by e the unit vector
from the comet center to the landmark and by d := & — & the vector from the spacecraft to the
comet center; note that both d and n are known, n being given by

n = —Ue—ve + fes ‘ (18)

Va2 + 0%+ f2

Then there is a number A > 0 such that re = —d+An. Taking norms on both sides of this equation,
we find 72 = ||d||* — 2X\{n, d) + A\? and hence

A2 = (n,d) £ \/(n,d>2— |d|[? + r2. (19)

Since (n,d) > 0 and r < ||d||, both solutions \; are positive; it is geometrically clear that, if the
comet shape is not too different from that of a sphere, the smaller of the two values A; is the sought
solution. Hence A = (n,d) — \/(n,d)2 — ||d||2 + r2 so that the equation re = —d + An becomes

e =~ (~d+ tmdym—/fn d P ) (20)

7



Fig. 5: Determination of the unit vector from the comet center to the landmark

Let us now assume that the comet can be approximated by a sphere of radius R where R is at
least approximately known. Then r = R, and the upshot of (20) is that the unit vector e(t) can be
computed from a measurement taken at time ¢. This observation will now be exploited to determine
the spin rate w, the comet attitude gy at the reference time and the landmark coordinates # and
¢ from given landmark vectors e; = e(¢;) resulting from measurements at times ;.

Method 1: One landmark from three images. Take three measurements on which the
same landmark can be identified and let e;, e; and e, be the associated landmark unit vectors.
The comet’s rotation axis d must be perpendicular to both e; — e; and ex — e;, hence is given by

d— & (ej —ei) x (ex — €j)

: (21)
I(ej —e:) % (ex — ;)]
side view top view
d e
equator | 6
Fig. 6: Determination of spin axis, landmark latitude and spin rate.
The landmark latitude # must then satisfy sin® 6 = cos?(90° — 0) = (d, e;)? so that
sinf = £(d,e;) (22)
for all 7. Moreover, writing
. e; — (e, d)d
é; = , (23)
lei — (es, d)d|



and denoting by ;; the angle by which the landmark was rotated about the axis of rotation, we
have
(€i,€;) = cosyij = cos(w(tj — tl)) (24)

which determines the spin rate w. Consequently, the comet attitude at time ¢; is given by the
column vectors

d X e;
=d = = d = gy X 3. 25
gs y g2 ||d » €i|| an g1 =92 X g3 ( )

It is clear that the landmark longitude cannot be estimated from the available measurements;
however, we can assume that the first axis in the body-fixed system is pointing in the direction of
the landmark longitude so that ¢ = 0 (i.e., we define zero longitude by the landmark location).

Method 2: General equations. Let us assume that a number of landmarks can be identified
on a sequence of images. Let e{**) be the unit vector from the comet center to the i-th landmark
at the time the k-th image is taken. Dividing (17) by » = R we find that

. cos 0; cos(p; + wig)
eF) = g0 | cosb; sin(p; + wiz) (26)
SiIl 91

where tj is the time (counted from the epoch) at which the k-th picture is taken. Since gg is a
rotation matrix and hence preserves inner products, we find from (26) that

(e(i’k), e(j’e)> = cosb; cosb; cos(goi — @i +w(ty — tg)) + sin#; sin @, (27)

so that the comet attitude go is decoupled from the other unknowns. (We note that it is not possible
to determine all longitudes ¢; from these equations, since only the differences ¢; — ¢; occur; this
shows again that, within our present considerations, zero longitude can be defined arbitrarily for
one of the landmarks, and one can only hope to determine the longitude separations from all other
landmarks to the chosen one.) Let us see which conclusions can be drawn from (27) in special
cases.

Method 2a: One single landmark from several images. Considering only one single
landmark (say the i-th), we find that

(eF) Dy — ¢os? 0; cos(wty — wiy) + sin? 6; (28)
= cos(wty — wiy) + (1 — cos(wty — wtg)) sin® 0,
Eliminating 0; via . .
n?0, — (elR) 0y _ cos(wty — wiy) (29)
1 — cos(wtr — wty)
we obtain the compatibility conditions
<e(i;k)’ e(i75)> _ COS(wtk; — wte) B <€(i’K)7 e(iyL)> — COS(C()tK — th) (30)
1 — cos(wtr — wty) B 1 — cos(wtrg — wty)

which must hold for all pairs (k,¢) and (K, L). Note that these can be rewritten in the form
ake cos(WAKL) — arr, cos(wWAge) +axr, — age = 0 where Agp :=tx —tp and age 1= 1— (e(i’k), e(i’£)>;
hence w can be found as a root of functions of the form F(w) := a cos(Aw) — b cos(Bw) + b — a with
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known constants a, b, A, B. Thus the following algorithm can be used to reconstruct the unknown
parameters from one single landmark which is seen on at least three different images: We first
determine the spin rate w from (30) (possibly with ambiguities), then the landmark latitude 6;
from (29) (with a single ambiguity) and finally the comet attitude go from (26) (to be solved in
the least-squares sense after letting ¢; := 0).

Method 2b: Several landmarks on one single image. Let us see which information can
be inferred from one single image (say the k-th). Letting £ = k in (27), we find that
(eF) k)Y = ¢0s); cos 8; cos(p; — ¢;) +sinb; sind;. (31)

If the landmark latitudes 6; are already known (for example from the method described before),
we can simply use (31) to determine the longitude separations via

(e(F) e(bR)Y _ sin @; sin 6;

i — i) = . 32
cos(ipi — ;) cos 0; cos 0; (32)

If (32) is used without a priori information then, if s landmarks can be identified, this constitutes
a system of s(s—1)/2 equations for the 2s — 1 unknowns 61, ...,0s and w2 —p1,. .., ps — @1, which
can be solved if s(s —1)/2 > 2s — 1 (which is the case for s > 5).

Method 2c: Two landmarks from two images. Let us consider the case that two different
landmarks can be identified on two different images. Writing At := t3 — t; and Ap = @y — @1,
the nontrivial equations of the form (27) (i.e., the ones for which (¢, k) # (j,€)) take the following
forms:

<e(1,1) (1, 2)> cos? 6 cos(wAt) + sin® 6y
(B ey — o6, cos by cos(Ay) + sin b sin fy;
<e(1,1) (2, 2)> cos 07 cos 2 cos(Ap + wAt) + sin 6 sin f; (33)
<e(1:2) (2, 1)> cos 07 cos 2 cos(Ap — wAt) + sin 6 sin f;
(€12 22y = cos6; cos by cos(Ayp) + sin by sin Oy;
<e(2,1), 6(2:2)> — cos® 0, cos(wAt) + sin? 6.
A comparison of the second and the fifth equation yields the compatibility condition
(D) ey = (12 (2.2, (34)

since (33) consists of six equations for four unknowns there must be (at least) one other compati-
bility condition. From the first and the last equation we find that

1 — <e(1:1) 6(1’2)> 1 — <e(2:1) 6(2’2)>
’ d 20y = ’ ; 35
1 — cos(wAt) and oS 1 — cos(wAt) (35)

cos? 6, =

since the landmark latitudes must satisfy —7/2 < ; < 7/2 and hence have a positive cosine, roots
can be extracted unambiguously in (35) so that

1— {e(1D), ¢1,2)) 1— (e(21), ¢(22))
costh = \/ T~ cos(wA) and cosfy = T cosAl) (36)
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Plugging in (33) the second into the third and the fifth into the fourth equation, we find that

(eBD) 22y — cos6; cos by cos(Ap + wAt) + (MDY — cos ) cos by cos(Ap),

37
<€(1’2), 6(2’1)> = cosf cosfy cos(Ap — wAL) + (6(1’2), 6(2’2)> — cos 81 cos b2 cos(Ayp) (37)
and hence that
(D) e(22) _ 2Dy — o560, cosfs - (cos(Ap + wAt) — cos(Ayp)), (38)
(e D _ 22y — 056, cos b - (cos(Ap — wAt) — cos(Ayp)).
Plugging (36) into (38), we obtain
U (e e(2:2) _ e(21)) _cos(Ap +wAt) — cos(Ayp)
T /1= (D) (D) /1 — (e e22) 1 — cos(wAt) ’
Vo (e1:?) e(21) _ e(2:2)) _cos(Ap —wAL) — cos(Ayp)
/1= (e e(L2)) /T — (eD) (22 1 — cos(wAt)
(eth), eh,2)) (e>1), el2:2))
Addition of the last two equations yields U + V = —2 cos(Ayp), i.e.,
1 (1,2) _ .(1,1) ,(2,2) _ .(2,1)
cos(Ap) = e £ ° e ) (40)

2 \/1 — <e(1,1), 6(1,2)>\/1 _ <€(2,1),6(2,2)> )

Once Ay is known, we can determine wA¢ (and hence w) from any of the two equations in (39),
which can be rewritten in the form

cos(Ay) cos(wAt) — sin(Ay) sin(wAt) — cos(Ayp) = U — U cos(wAt),

cos(Ay) cos(wAt) + sin(Ay) sin(wAt) — cos(Ayp) = V — V cos(wAt). (41)

A particularly elegant solution (which yields wA¢t directly in terms of the measurement data,
without a need to determine Ay beforehand) is obtained by rewriting (41) in the form

{Cos(wAt)—l —sin(wAt)} {COS(A@} U

U
cos(wAt) — 1 sin(wAt) | | sin(Ay) - <1 B COS(WAt)) { } (42)

which, upon inversion, results in

o] = sy |1 ety a1 | V] (43)

ie.,

(44)

9 sin(wAd) {COS(A@} _ { (U + V) sin(wAt) }

sin(Agp) (U = V) (1 — cos(wAt))

Taking norms on both sides yields 4 sin®(wAt) = (U + V)?sin®(wAt) + (U — V)2(1 — cos(wAt))2
which can be rewritten as (4 — (U + V)?) (1 — cos?(wAt)) = (U — V)*(1 - cos(wAt))z. Dividing
this equation by 1 — cos(wAt) yields (4 — (U + V)?) (1 + cos(wAt)) = (U — V)*(1 — cos(wAt)),
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which results in (4 + (U — V)? — (U + V)?) cos(wAt) = (U — V)? + (U + V)? — 4. This can be

rewritten in the form

2U2+ V3 -4 U4V -1

csWA) = —— v T T 1oy

(45)

Subsequently, the latitudes #; and 0, can be obtained from (36).

Method 2d: Determination of longitude separations. If the landmark latitudes #; and
6; and the spin rate w are already known, we can rewrite (27) in the form

<€(i,k)’ 5(]:£)> — sin 91 sin aj
cos 0; cos 0;

COS (goi —p; + w(tk — te)) = (46)

to determine the longitude separation ¢; — ¢; if landmark ¢ can be seen on the k-th image and
landmark j on the ¢-th image.

5. Averaging Initial Estimates

In the previous paragraph it was described how initial estimates for the estimation parameters can
be obtained under simplifying assumptions. However, different methods and different images used
may lead to different raw estimates, and to obtain an initial estimate which is good enough to ensure
convergence of the subsequent estimation process, it is necessary to form an “average” of the raw
estimates obtained. This leads to a general problem: Given elements py,...,p, on a manifold M,
what is the “average value” of these elements? (In our case the manifold M is the three-dimensional
rotation group, and the elements to be averaged are rotation matrices representing different raw
estimates of the comet attitude. Similarly, in spin axis attitude determination, the manifold M
is the unit sphere in three-dimensional space, and the elements to be averaged are unit vectors
representing different raw estimates of the spin axis direction of a spacecraft.) Average values
of elements pi,...,p, on a Riemannian manifold were first discussed by Maurice Fréchet* who
defined them as those elements ¢ which minimize Y, ; d(&,p;)* where d(p, ¢) is the Riemannian
distance between points p and ¢, i.e., the length of the shortest curve joining p and ¢. In most
practical cases such a mean can be found by an iterative scheme whereby an initial guess § for the
average of p1,...,p, leads to an improved guess ¢ via the general formula

§ = expg (%Zloggm-)) (47)

where exp, denotes the exponential function at a point ¢ (defined by exp¢(v) = (1) where « is
the unique geodesic with a(0) = ¢ and &(0) = v) and where log, is its inverse.

* L’intégrale abstraite d’une fonction abstraite d’une variable abstraite et son application a la
moyenne d’un élément aléatoire de nature quelconque, Revue Scientifique , PP- -512. — Les
d’un élé t aléatoire d t | R Scients 1944 483-512. — L

éléments aléatoires de nature quelconques dans un espace distancié, Annales de U'Institut Henri
Poincaré 10 (1948), pp. 215-310.
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Fig. 7: Improving an approximate mean £ of points pq,...,p, on a Riemannian manifold M.

Examples. (a) If M = S"! := {x € R” | ||z| = 1} is the unit sphere in n-dimensional
space, then the exponential function and the logarithm are given by

expe(v) = COS(||U||)€+Siﬂ(||0||)—||z||,
(48)
arccos((p, &))
lo = — — (p, .
ge(p) =6 (p (p €>€>

(b) If M = G is a Lie group (such as the rotation group), then everything can be reduced to
a neighborhood of the identity element e; i.e., the iteration scheme takes the form

£ = Eexp, (%Zloge(ﬁ‘lpi)> - (49)
=1

(c) If M = SO(3) := {g € R**3 | gTg = 1} is the rotation group in three-dimensional space
(with the identity matrix 1 playing the role of the neutral element ¢), then the Rodrigues formula
yields
1 — cos(||w sin( |jw

el ., 4 sl

] ]

(g—g").

exp. (L(w)) = cos(Jw])1+

arccos((tr(g) —1)/2)
V3~ tr(g)? + 2 tr(g)
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L(w),
(50)

log. g =




6. Iterative Improvement of Estimates

In the previous paragraphs we showed how rough estimates of the comet attitude and angular
velocity can be obtained. These estimates need to be improved in an iterative scheme whereby
in each step the measurement equations are linearized about the current estimates and then a
least-squares minimization of the resulting residuals is performed to update these estimates. For
the purpose of this paper we assume that both the spacecraft position and the camera attitude are
known. Then the only uncertain term in the measurement equations

(where L :={ — z) (51)

is the landmark location £. A change 6¢ = 0L in the nominal value £ results in changes ou and dv
in the expected measurements which are given by

<5L, 01> <L, 03> — <L, 01><5L, 03> <01 X3, (5L) X L> <L X2, 5L>
ou=—f L,cs)? = T L) = L) .
51} . —f <5L, 02><L, 03> — <L, 02><5L, 03> . —f <02 X3, (5L) XL> . —f <L><Cl, 5L> ( )
- <L,03>2 - <L,03>2 - <L,03>2

Now a change in L = £ — x = £ + gb — x results from changes in &, g and b. Let &, up, go and
wp be the position, velocity, attitude and angular velocity at a reference time t; = 0. While in
operational software we have to derive & and ¢ at the measurement time from these initial data
by numerically integrating the dynamical equations, we assume here for simplicity’s sake that the
comet velocity and angular velocity can be treated as constants (which is not too unrealistic for a
sufficiently short observation interval). Then £(¢) = & + tu and g(t) = goexp(tL(w)) and hence

5 = 88+t du,

69 = (0go0) exp(tL(w)) +t- goexp(tL(w))L(dw). (53)

Now due to the structure of the rotation group SO(3) as a nonlinear manifold, a change (i. e.,
infinitesimal increment) dgp in the estimate go takes the form dgo = goL(A) with a vector A =
(A1,A9,A3)T € R3. Then, writing g = goexp(tL(w)), the second equation in (53) becomes

69 = goL(A)exp(tL(w)) + t- goexp(tL(w))L(dw)

. (54)
= goL(A)gy g + t-gL(6w) = L(goA)g + t-gL(éw).

Thus changes in &y, u, go, w and the body-referenced landmark position b result in a change in
L = ¢ + gb — x which is given by

0L = (3§) + (69)b+g(0b) = (60) +t- (6u) + L(goA)gb+1t-gL(dw)b+g(6b).  (55)

Now if a sequence of images is taken on which a number of s landmarks (out of which r are
different) can be identified, then plugging (55) into (52) results in an equation of the form
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ouq ou
51)1 A
L = A w (56)
sb(D)
OUg .
OV :
| 067 |

where A is a matrix of size (2s) x (12 + 3r) involving the comet states at the measurement times.
As it is desired to match, as well as possible, the theoretically expected with the actually obtained
measurements, this leads to solving the overdetermined linear system

[ 550 ] r i expected 7
Su u({btamed —u p
i ted
A U(ljbtalned _ UTXPGC e
Al w | = . (57)
5b(1) btained . ted
obtaine expecte
. U — ud*P
: Uobtained _ Uexpected
3b) o ’ )

in the least-squares sense. (Here the expected measurement values are obtained by evaluating
(7) using the current estimates for the estimation parameters.) Once this is done, the computed
parameter increments 0o, du, A, dw and 6b'Y are used to update the current estimates. In the
case of the parameter go, this update state is nonlinear, being given by the formula

go = QOGXP<L(A))- (58)

Fig. 8: Nonlinear update step for the estimate of the initial comet attitude.
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